B-math 2nd year Mid Term Subject : Analysis III

Time: 3.00 hours Max.Marks 50.

1. Let $Q = [0,1] \times [0,1]$ and define f(x,y) on Q as follows:

$$f(x,y) = \begin{cases} x+y & \text{if } (x,y) \in Q, x+y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is integrable on Q and evaluate the double integral $\iint\limits_Q f$ of f over Q.

(10)

2. Let $S = \mathbb{R}^2 \setminus \{(0,0)\}$. Let C be a piecewise smooth Jordan curve lying in S taken in the clockwise direction. Evaluate $\int\limits_C Pdx + Qdy$, where $P(x,y) := \frac{y}{x^2+y^2}$ and $Q(x,y) := \frac{-x}{x^2+y^2}$. Hint : consider (separately) the case (0,0) is inside (respy. outside) C.

(10)

3. Let $f:[0,\infty)\to [0,\infty)$ be continuous and define g(x,y) := $f(x^2+y^2)$ $(x,y)\in \mathbb{R}^2$. Let $R:=[-r,r]\times [-r,r]$. Show that

$$\lim_{r \uparrow \infty} \iint\limits_R g(x,y) dx dy = \pi \int_0^\infty f(u) du$$

where the (improper) integral in the RHS is evaluated as a limit of integrals over finite intervals. (10)

4. Let R be a region in \mathbb{R}^2 and C, a piecewise smooth Jordan curve, be its boundary. Let $\alpha(t) := (X(t), Y(t)), a \leq t \leq b$ be a parametrization of C. Show that

$$area(R) = \frac{1}{2} \int_{a}^{b} \{X(t)Y'(t) - Y(t)X'(t)\}dt$$

where the prime denotes differentiation.

(10)

5. If ϕ and ψ are both potential functions for a continuous vector field f on an open connected set S in \mathbb{R}^n show that $\phi - \psi$ is a constant. Hint: Show that there exists $C \in \mathbb{R}$ such that the set $S_1 = \{(x,y) \in S : \phi(x,y) = \psi(x,y) + C\}$ is a non empty open set in S.